Genome-Scale Variant Interpretation

Automated Radiation Dose Estimation

Mission Statement

MutationForecaster® (mutationforecaster.com) is Cytognomix’s patented web-portal for analysis of all types of mutations (coding and non-coding), including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.

MutationForecaster® combines our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and  Variant Effect Predictor.  With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database.  Select predicted mutations  by phenotype using articles with CytoVisualization Analytics.  With Workflows,  automatically perform end-to-end analysis with all of our software products.

Download an 1 page overview of MutationForecaster®link .

You can now experience our integrated suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, analyze datasets that we have analyzed in our peer-reviewed publications with any of our software tools.

Ionizing radiation produces characteristic chromosome changes. The altered chromosomes contain two central constrictions, termed centromeres, instead of one (known as dicentric chromosomes [DCs]). Chromosome biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures.  In emergency responses to a range of doses, labs need efficient methods that identify DCs.

Cytognomix has developed  a novel approach to find DCs that is independent of chromosome length, shape and structure from different laboratories (paper: TBME).  The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software  works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or  purchase (link).  Or contact us for details (pricing).

ADCI* uses machine learning based algorithms with high sensitivity and specificity that distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from all types of commercial metaphase scanning systems,  selects high quality cells for analysis, identifies dicentric chromosomes (removing false positives), builds biodosimetry calibration curves, and estimates exposures.  ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.

We find and validate mutations that others cannot with advanced,  patented genomic  probe and bioinformatic technologies. Cytognomix continues our  long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the biomedical and clinical genomics communities.

Additional Services

Browse the products section of the menu found in the header bar for more information regarding any of our services.

Latest Posts

Feb. 23, 2021. CytoGnomix receives new US Patent for radiation biodosimetry

CytoGnomix’s first #patent for automated interpretation of #radiation #biodosimetry exposures issued today. US Patent 10,929,641: Smart microscope system for radiation biodosimetry (http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10929641.PN.&OS=PN/10929641&RS=PN/10929641)

Feb. 9, 2021. Presentation at the International Atomic Energy Agency

Presentation: “Demonstration of the Automated Dicentric Chromosome Identifier and Dose Estimator System (ADCI™) in a Cloud-based Online Environment” at the International Atomic Energy Agency Coordinated Research Project (CRP) E35010: Applications of Biological Dosimetry Methods in Radiation Oncology, Nuclear Medicine, Diagnostic and Interventional Radiology (MEDBIODOSE)

December 29, 2020. Coming soon… ADCI_Online

Greetings to you for a safe and healthy New Year. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) has become the biodosimetry industry’s leading software system for accurate and rapid quantification of absorbed ionizing radiation. This year we upgraded our Windows-based system to also determine partial body exposures, both fraction of cells exposed and […]

Dec. 10, 2020. New article on chemotherapy response prediction

We have published: Pathway‐extended gene expression signatures integrate novel biomarkers that improve predictions of patient responses to kinase inhibitors. Ashis J. Bagchee‐Clark , Eliseos J. Mucaki, Tyson Whitehead, and Peter K. Rogan MedComm (Wiley) 1(3): 311-327, 2020.  (https://doi.org/10.1002/mco2.46) Abstract: Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This […]

Nov. 9, 2020. Notice of Allowance for US Pat App. Ser. No. 16/057,710

CytoGnomix’s Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) system will be awarded a US Patent for all claims covering “Smart Microscope System for Radiation Biodosimetry.”  The patent application is available at: https://patents.google.com/patent/US20200050831A1 The abstract reads: An automated microscope system is described that detects dicentric chromosomes (DCs) in metaphase cells arising from exposure to ionizing […]

New support for geostatistical analysis of COVID19 hotspots in Ontario

In response to the Call for Proposals under its Innovation for Defence Excellence and Security (IDEaS) program to address COVID-19 challenges, the Department of National Defence has recommended CytoGnomix’s project: Locating emerging COVID19 hotspots in Ontario after community transmission by time-correlated, geostatistical analysis for funding following evaluation against mandatory, point rated criteria, and strategic considerations. […]

September 4, 2020. New article on automated partial body radiation exposure determination

We have added the capability to determine whether samples exposed to ionizing radiation are wholly or partially irradiated. If partially, the approach determines the fraction of metaphase cells exposed and the whole body-equivalent dose completely automatically. CytoGnomix’s Automated Dicentric Chromosome Identifier and Dose Estimation software has been upgraded to generate these results as part of […]